Cofactor processing in galactose oxidase.
نویسندگان
چکیده
GO (galactose oxidase; E.C. 1.1.3.9) is a monomeric 68 kDa enzyme that contains a single copper ion and an amino acid-derived cofactor. The enzyme is produced by the filamentous fungus Fusarium graminearum as an extracellular enzyme. The enzyme has been extensively studied by structural, spectroscopic, kinetic and mutational approaches that have provided insight into the catalytic mechanism of this radical enzyme. One of the most intriguing features of the enzyme is the post-translational generation of an organic cofactor from active-site amino acid residues. Biogenesis of this cofactor involves the autocatalytic formation of a thioether bond between Cys-228 and Tyr-272, the latter being one of the copper ligands. Formation of this active-site feature is closely linked to the loss of an N-terminal 17 amino acid prosequence. When copper and oxygen are added to this pro-form of GO (pro GO), purified in copper-free conditions from the heterologous host Aspergillus nidulans, mature GO is formed by an autocatalytic process. Structural comparison of pro GO with mature GO reveals overall structural similarity, but with some regions showing significant local differences in main-chain position. Some side chains of the active-site residues differ significantly from their positions in the mature enzyme. These structural effects of the prosequence suggest that it may act as an intramolecular chaperone to provide an open active-site structure conducive to copper binding and chemistry associated with cofactor formation. The prosequence is not mandatory for processing, as a recombinant form of GO lacking this region and purified under copper-free conditions can also be processed in an autocatalytic copper- and oxygen-dependent manner.
منابع مشابه
Pyrroloquinoline Quinone as Cofactor in Galactose Oxidase
Galactose oxidase from Dactylium dendroides was shown to contain one molecule of covalently bound pyrroloquinoline quinone (PQQ)/enzyme molecule. From the spectroscopic characteristics reported for the enzyme forms, a mechanistic role for PQQ could be deduced. In analogy with other quinoproteins, the initial formation of a PQQ-substrate adduct is proposed. Following internal hydrogen transfer, ...
متن کاملAn Investigation on the Plant Oxidoreductases * Quinoprotein Nature of Some Fungal
The presence of pyrroloquinoline quinone (PQQ) as the organic cofactor of Dactylium dendroides galactose oxidase and lentil (Lens culinaris) seedling amine oxidase, purported PQQ-containing oxidoreductases (Van der Meer, R. A., Jongejan, J. A., and Duine, J. A. (1989) J. Biol. Chern. 264,7792-7794; Citro, G., Verdina, A., Galati, R., Floris, G., Sabatini, S., and Finazzi-Argo‘, A. (1989) FEBS L...
متن کاملHomemade cofactors: self-processing in galactose oxidase.
N enzymes use a variety of cofactors for achieving their impressive catalytic prowess. Generally, these cofactors are generated via complex multistep biosynthetic pathways involving many proteins. A less commonly encountered means of cofactor biosynthesis, but one that is found with increasing frequency, involves the posttranslational modification of endogenous amino acids in the enzyme. These ...
متن کاملLive diatom silica immobilization of multimeric and redox-active enzymes.
Living organisms are adept in forming inorganic materials (biominerals) with unique structures and properties that exceed the capabilities of engineered materials. Biomimetic materials syntheses are being developed that aim at replicating the advantageous properties of biominerals in vitro and endow them with additional functionalities. Recently, proof-of-concept was provided for an alternative...
متن کاملThe radical chemistry of galactose oxidase.
Galactose oxidase is a free radical metalloenzyme containing a novel metalloradical complex, comprised of a protein radical coordinated to a copper ion in the active site. The unusually stable protein radical is formed from the redox-active side chain of a cross-linked tyrosine residue (Tyr-Cys). Biochemical studies on galactose oxidase have revealed a new class of oxidation mechanisms based on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society symposium
دوره 71 شماره
صفحات -
تاریخ انتشار 2003